OilLevelDectect.cpp 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. #include "OilLevelDectect.h"
  2. using namespace std;
  3. IDetection::DectectResult OilLevelDectect::GetStateResult(cv::Mat img, cv::Rect rec)
  4. {
  5. return resultValue;
  6. }
  7. IDetection::DectectResult OilLevelDectect::GetDigitResult(cv::Mat img, cv::Rect rec)
  8. {
  9. //resultValue.clear();
  10. std::cout << "test" << std::endl;
  11. try
  12. {
  13. cv::Mat ROI = img(rec);
  14. /*imwrite("test.png", ROI);
  15. YunDaISASImageRecognitionService::SetImage(QString::fromStdString("test.png"));*/
  16. Detect(ROI);
  17. }
  18. catch (const std::exception& ex)
  19. {
  20. YunDaISASImageRecognitionService::ConsoleLog(ex.what());
  21. }
  22. if (resultValue.m_confidence < 0.1)
  23. {
  24. resultValue = DectectResult(0.45, 0, "");
  25. }
  26. return resultValue;
  27. }
  28. bool OilLevelDectect::Detect(cv::Mat& SrcImg)
  29. {
  30. cv::Mat blob;
  31. int col = SrcImg.cols;
  32. int row = SrcImg.rows;
  33. int maxLen = MAX(col, row);
  34. cv::Mat netInputImg = SrcImg.clone();
  35. if (maxLen > 1.2 * col || maxLen > 1.2 * row) {
  36. cv::Mat resizeImg = cv::Mat::zeros(maxLen, maxLen, CV_8UC3);
  37. SrcImg.copyTo(resizeImg(cv::Rect(0, 0, col, row)));
  38. netInputImg = resizeImg;
  39. }
  40. cv::dnn::blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0, 0), true, false);
  41. net.setInput(blob);
  42. std::vector<cv::Mat> netOutputImg;
  43. net.forward(netOutputImg, net.getUnconnectedOutLayersNames());
  44. std::vector<int> classIds;//结果id数组
  45. std::vector<float> confidences;//结果每个id对应置信度数组
  46. std::vector<cv::Rect> boxes;//每个id矩形框
  47. float ratio_h = (float)netInputImg.rows / netHeight;
  48. float ratio_w = (float)netInputImg.cols / netWidth;
  49. int net_width = className.size() + 5; //输出的网络宽度是类别数+5
  50. float* pdata = (float*)netOutputImg[0].data;
  51. for (int stride = 0; stride < strideSize; stride++) { //stride
  52. int grid_x = (int)(netWidth / netStride[stride]);
  53. int grid_y = (int)(netHeight / netStride[stride]);
  54. for (int anchor = 0; anchor < 3; anchor++) { //anchors
  55. const float anchor_w = netAnchors[stride][anchor * 2];
  56. const float anchor_h = netAnchors[stride][anchor * 2 + 1];
  57. for (int i = 0; i < grid_y; i++) {
  58. for (int j = 0; j < grid_x; j++) {
  59. float box_score = pdata[4]; ;//获取每一行的box框中含有某个物体的概率
  60. if (box_score >= boxThreshold) {
  61. cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
  62. cv::Point classIdPoint;
  63. double max_class_socre;
  64. minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
  65. max_class_socre = (float)max_class_socre;
  66. if (max_class_socre >= classThreshold)
  67. {
  68. //rect [x,y,w,h]
  69. float x = pdata[0]; //x
  70. float y = pdata[1]; //y
  71. float w = pdata[2]; //w
  72. float h = pdata[3]; //h
  73. int left = (x - 0.5 * w) * ratio_w;
  74. int top = (y - 0.5 * h) * ratio_h;
  75. left = left < 0 ? 0 : left;
  76. top = top < 0 ? 0 : top;
  77. int widthBox = int(w * ratio_w);
  78. int heightBox = int(h * ratio_h);
  79. widthBox = widthBox > col ? col : widthBox;
  80. heightBox = heightBox > row ? row : heightBox;
  81. if (left < 0 || left>col || top < 0 || top>row || widthBox > col || heightBox > row)
  82. {
  83. continue;
  84. }
  85. classIds.push_back(classIdPoint.x);
  86. confidences.push_back(max_class_socre * box_score);
  87. boxes.push_back(cv::Rect(left, top, widthBox, heightBox));
  88. }
  89. }
  90. pdata += net_width;//下一行
  91. }
  92. }
  93. }
  94. }
  95. //执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
  96. vector<int> nms_result;
  97. cv::dnn::NMSBoxes(boxes, confidences, nmsScoreThreshold, nmsThreshold, nms_result);
  98. float confidenceMax = 0;
  99. int confidenceMaxId = 0;
  100. if (nms_result.size()>0)
  101. {
  102. for (int i = 0; i < nms_result.size(); i++) {
  103. int idx = nms_result[i];
  104. if (confidences[idx] > confidenceMax)
  105. {
  106. if (classIds[idx] ==0 )
  107. {
  108. confidenceMax = confidences[idx];
  109. resultValue = DectectResult(confidenceMax, cv::abs((float)(row - (boxes[i].y)- (boxes[i].height/2)) / (float)row) * 100, "");
  110. }
  111. else
  112. {
  113. confidenceMax = confidences[idx];
  114. resultValue = DectectResult(confidenceMax, cv::abs((float)(row - (boxes[i].y)) / (float)row) * 100, "");
  115. }
  116. }
  117. YunDaISASImageRecognitionService::ConsoleLog(QString::fromStdString(className[classIds[idx]]));
  118. }
  119. }
  120. else {
  121. resultValue = DectectResult(confidenceMax, 0.00, "");
  122. }
  123. return false;
  124. }
  125. bool OilLevelDectect::Init(bool isCuda)
  126. {
  127. string model_path = "models/oil_level-sim.onnx";
  128. try {
  129. net = cv::dnn::readNet(model_path);
  130. }
  131. catch (const std::exception& ex)
  132. {
  133. YunDaISASImageRecognitionService::ConsoleLog(ex.what());
  134. return false;
  135. }
  136. //cuda
  137. if (isCuda) {
  138. net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
  139. net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16);
  140. }
  141. //cpu
  142. else {
  143. net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
  144. net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
  145. }
  146. return true;
  147. return false;
  148. }