123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514 |
- #include "NumberDectect.h"
- #include "DoublePointerCountALGO.h"
- #include "AtmosphericPressureALGO.h"
- #include "CircularArresterCurrentALGO.h"
- #include "ArresterCircularZeroThreeALGO.h"
- using namespace std;
- cv::Mat NumberDectect::DoPerspectiveTransform(cv::Mat& SrcImg)
- {
- bool isShowWindow = false;
- vector<pair<cv::Scalar, int>> sideScalarCount;
- Mat src = SrcImg;
- for (int row = 0; row < src.rows; row++) {
- uchar* uc_pixel = src.data + row * src.step;
- for (int col = 0; col < src.cols; col++) {
- /*uc_pixel[0] = 255 - uc_pixel[0];
- uc_pixel[1] = 255 - uc_pixel[1];
- uc_pixel[2] = 255 - uc_pixel[2];*/
- if (row == src.rows - 1 || row == 0)
- {
- //sideScalarCount.push_back(pair())
- cv::Scalar sc(uc_pixel[0], uc_pixel[1], uc_pixel[2]);
- auto item = std::find_if(sideScalarCount.begin(), sideScalarCount.end(), [sc](pair<cv::Scalar, int> p) { return p.first == sc; });
- if (item != sideScalarCount.end())
- {
- item->second++;
- }
- else {
- sideScalarCount.push_back(pair<cv::Scalar, int>(sc, 0));
- }
- }
- else
- {
- if (col == src.cols - 1 || col == 0)
- {
- cv::Scalar sc(uc_pixel[0], uc_pixel[1], uc_pixel[2]);
- auto item = std::find_if(sideScalarCount.begin(), sideScalarCount.end(), [sc](pair<cv::Scalar, int> p) { return p.first == sc; });
- if (item != sideScalarCount.end())
- {
- item->second++;
- }
- else {
- sideScalarCount.push_back(pair<cv::Scalar, int>(sc, 0));
- }
- }
- }
- uc_pixel += 3;
- }
- }
- int maxCount = 0;
- cv::Scalar maxSc;
- for (int i = 0; i < sideScalarCount.size(); i++) {
- if (sideScalarCount[i].second > maxCount)
- {
- maxCount = sideScalarCount[i].second;
- maxSc = sideScalarCount[i].first;
- }
- }
- int matCols = 500;
- Size size(500, 420);
- resize(src, src, size, (float)matCols / src.cols, (float)matCols / src.cols);
- if (isShowWindow) if (isShowWindow) cv::imshow("input image", src);
- cv::Point p(50, 50);
- Mat largeImage(Size(600, 520), CV_8UC3, maxSc);// Mat(Size(520, 440), , CV_8UC3);
- Mat imageROI;
- imageROI = largeImage(Rect(p.x, p.y, src.cols, src.rows));
- src.copyTo(imageROI);
- if (isShowWindow) cv::imshow("input image imageROI", largeImage);
- src = largeImage;
- //bgr 2 gray 转为灰度图像
- Mat src_gray;
- cvtColor(src, src_gray, COLOR_BGR2GRAY);
- //binary 二值化
- Mat binary;
- threshold(src_gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU); //THRESH_BINARY_INV二值化后取反
- //imshow("binary", binary);//因为有一些斑点存在
- //形态学 闭操作:可以填充小的区域
- Mat morhp_img;
- Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
- morphologyEx(binary, morhp_img, MORPH_CLOSE, kernel, Point(-1, -1), 3);
- //imshow("morphology", morhp_img);
- Mat dst;
- bitwise_not(morhp_img, dst);//在取反
- if (isShowWindow) cv::imshow("dst", dst);//
- //轮廓发现
- vector<vector<Point>> contous;
- vector<Vec4i> hireachy;
- findContours(dst, contous, hireachy, CV_RETR_TREE, CHAIN_APPROX_SIMPLE, Point());
- std::cout << "contous.size:" << contous.size() << endl;
- //轮廓绘制
- int width = src.cols;
- int height = src.rows;
- Mat drawImage = Mat::zeros(src.size(), CV_8UC3);
- std::cout << contous.size() << endl;
- for (size_t t = 0; t < contous.size(); t++)
- {
- Rect rect = boundingRect(contous[t]);
- if (rect.width > width / 2 && rect.height > height / 2 && rect.width < width - 5 && rect.height < height - 5)
- {
- drawContours(drawImage, contous, static_cast<int>(t), Scalar(0, 0, 255), 2, 8, hireachy, 0, Point(0, 0));
- }
- }
- if (isShowWindow) cv::imshow("contours", drawImage);//显示找到的轮廓
- //直线检测
- vector<Vec4i> lines;
- Mat contoursImg;
- int accu = min(width * 0.2, height * 0.2);
- cvtColor(drawImage, contoursImg, COLOR_BGR2GRAY);
- if (isShowWindow) cv::imshow("contours", contoursImg);
- Mat linesImage = Mat::zeros(src.size(), CV_8UC3);
- HoughLinesP(contoursImg, lines, 2, CV_PI / 180.0, accu, accu, 3);
- for (size_t t = 0; t < lines.size(); t++)
- {
- Vec4i ln = lines[t];
- line(linesImage, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);//绘制直线
- }
- std::cout << "number of lines:" << lines.size() << endl;
- if (isShowWindow) cv::imshow("linesImages", linesImage);
- //寻找与定位上下 左右 四条直线
- int deltah = 0; //高度差
- int deltaw = 0; //宽度差
- Vec4i topLine, bottomLine; //直线定义
- Vec4i rightLine, leftLine;
- for (int i = 0; i < lines.size(); i++)
- {
- Vec4i ln = lines[i];//?????
- /*
- Opencv中的累计霍夫变换HoughLinesP(),输出的是一个Vector of Vec4i,
- Vector每个元素代表一条直线,是由一个4元浮点数构成,
- 前两个一组x_1,y_1,后两个一组x_2,y_2,代表了图像中直线的起始点和结束点。
- */
- deltah = abs(ln[3] - ln[1]); //计算高度差(y2-y1)
- //topLine
- if (ln[3] < height / 2.0 && ln[1] < height / 2.0 && deltah < accu - 1)
- {
- topLine = lines[i];
- }
- //bottomLine
- if (ln[3] > height / 2.0 && ln[1] > height / 2.0 && deltah < accu - 1)
- {
- bottomLine = lines[i];
- }
- deltaw = abs(ln[2] - ln[0]); //计算宽度差(x2-x1)
- //leftLine
- if (ln[0] < height / 2.0 && ln[2] < height / 2.0 && deltaw < accu - 1)
- {
- leftLine = lines[i];
- }
- //rightLine
- if (ln[0] > width / 2.0 && ln[2] > width / 2.0 && deltaw < accu - 1)
- {
- rightLine = lines[i];
- }
- }
- // 打印四条线的坐标
- std::cout << "topLine : p1(x,y)= " << topLine[0] << "," << topLine[1] << "; p2(x,y)= " << topLine[2] << "," << topLine[3] << endl;
- std::cout << "bottomLine : p1(x,y)= " << bottomLine[0] << "," << bottomLine[1] << "; p2(x,y)= " << bottomLine[2] << "," << bottomLine[3] << endl;
- std::cout << "leftLine : p1(x,y)= " << leftLine[0] << "," << leftLine[1] << "; p2(x,y)= " << leftLine[2] << "," << leftLine[3] << endl;
- std::cout << "rightLine : p1(x,y)= " << rightLine[0] << "," << rightLine[1] << "; p2(x,y)= " << rightLine[2] << "," << rightLine[3] << endl;
- //拟合四条直线
- float k1, k2, k3, k4, c1, c2, c3, c4;
- k1 = float(topLine[3] - topLine[1]) / float(topLine[2] - topLine[0]);
- c1 = topLine[1] - k1 * topLine[0];
- k2 = float(bottomLine[3] - bottomLine[1]) / float(bottomLine[2] - bottomLine[0]);
- c2 = bottomLine[1] - k2 * bottomLine[0];
- k3 = float(leftLine[3] - leftLine[1]) / float(leftLine[2] - leftLine[0]);
- c3 = leftLine[1] - k3 * leftLine[0];
- k4 = float(rightLine[3] - rightLine[1]) / float(rightLine[2] - rightLine[0]);
- c4 = rightLine[1] - k4 * rightLine[0];
- //求四个角点,
- Point p1;//topLine leftLine 左上角
- p1.x = static_cast<int>(c1 - c3) / k3 - k1;
- p1.y = k1 * p1.x + c1;
- Point p2;//topLine rightLine 右上角
- p2.x = static_cast<int>(c1 - c4) / k4 - k1;
- p2.y = k1 * p2.x + c1;
- Point p3;//bottomLine leftLine 左下角
- p3.x = static_cast<int>(c2 - c3) / k3 - k2;
- p3.y = k2 * p3.x + c2;
- Point p4;//bottomLine rightLine 右下角
- p4.x = static_cast<int>(c2 - c4) / k4 - k2;
- p4.y = k2 * p4.x + c2;
- std::cout << "Point p1: (" << p1.x << "," << p1.y << ")" << endl;
- std::cout << "Point p2: (" << p2.x << "," << p2.y << ")" << endl;
- std::cout << "Point p3: (" << p3.x << "," << p3.y << ")" << endl;
- std::cout << "Point p4: (" << p4.x << "," << p4.y << ")" << endl;
- if (p1.x > 0 && p1.y > 0 && p2.x > 0 && p2.y > 0 && p3.x > 0 && p3.y > 0 && p4.x > 0 && p4.y > 0)
- {
- if (p1.x < width && p2.x < width && p3.x < width && p4.x < width)
- {
- if (p1.y < height && p2.y < height && p3.y < height && p4.y < height)
- {
- //显示四个点
- cv::circle(linesImage, p1, 2, Scalar(0, 255, 0), 2);
- cv::circle(linesImage, p2, 2, Scalar(0, 255, 0), 2);
- cv::circle(linesImage, p3, 2, Scalar(0, 255, 0), 2);
- cv::circle(linesImage, p4, 2, Scalar(0, 255, 0), 2);
- if (isShowWindow) cv::imshow("find four points", linesImage);
- //透视变换
- vector<Point2f> src_corners(4);
- src_corners[0] = p1;
- src_corners[1] = p2;
- src_corners[2] = p3;
- src_corners[3] = p4;
- Mat result_images = Mat::zeros(height * 0.7, width * 0.9, CV_8UC3);
- vector<Point2f> dst_corners(4);
- dst_corners[0] = Point(0, 0);
- dst_corners[1] = Point(result_images.cols, 0);
- dst_corners[2] = Point(0, result_images.rows);
- dst_corners[3] = Point(result_images.cols, result_images.rows);
- Mat warpmatrix = getPerspectiveTransform(src_corners, dst_corners); //获取透视变换矩阵
- //imshow("final result warpmatrix", warpmatrix);
- cv::warpPerspective(src, result_images, warpmatrix, result_images.size()); //透视变换
- if (isShowWindow) cv::imshow("final result", result_images);
- //imwrite(imgpath, result_images);
- if (isShowWindow) cv::waitKey(5000);
- return result_images;
- }
- }
- }
- return Mat();
- }
- bool NumberDectect::Init(bool isCuda)
- {
- string model_path = "models/number-sim.onnx";
- try {
- net = cv::dnn::readNet(model_path);
- if (isCuda) {
- net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
- net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16);
- }
- //cpu
- else {
- net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
- net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
- }
- }
- catch (const std::exception& ex)
- {
- YunDaISASImageRecognitionService::ConsoleLog(ex.what());
- return false;
- }
- //cuda
-
- return true;
- return false;
- }
- IDetection::DectectResult NumberDectect::GetStateResult(cv::Mat img, cv::Rect rec)
- {
- return resultValue;
- }
- IDetection::DectectResult NumberDectect::GetDigitResult(cv::Mat img, cv::Rect rec)
- {
- //resultValue.clear();
- //std::cout << "test" << std::endl;
- //try
- //{
- // cv::Mat ROI = img(rec);
- // /*imwrite("test.png", ROI);
- // YunDaISASImageRecognitionService::SetImage(QString::fromStdString("test.png"));*/
- // Detect(ROI);
- //}
- //catch (const std::exception& ex)
- //{
- // YunDaISASImageRecognitionService::ConsoleLog(ex.what());
- //}
- //if (resultValue.m_confidence < 0.1)
- //{
- // resultValue = DectectResult(0.45, 0, "");
- //}
- return resultValue;
- }
- vector<IDetection::DectectResult> NumberDectect::GetDigitResults()
- {
- return this->resultValues;
- }
- bool NumberDectect::Detect(cv::Mat& SrcImg)
- {
- auto pecImg = DoPerspectiveTransform(SrcImg);
- if (pecImg.rows>0&& pecImg.cols>0 )
- {
- SrcImg = pecImg;
- }
- cv::Mat blob;
- int col = SrcImg.cols;
- int row = SrcImg.rows;
- int maxLen = MAX(col, row);
- cv::Mat netInputImg = SrcImg.clone();
- if (maxLen > 1.2 * col || maxLen > 1.2 * row) {
- cv::Mat resizeImg = cv::Mat::zeros(maxLen, maxLen, CV_8UC3);
- SrcImg.copyTo(resizeImg(cv::Rect(0, 0, col, row)));
- netInputImg = resizeImg;
- }
- cv::dnn::blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0, 0), true, false);
- net.setInput(blob);
- std::vector<cv::Mat> netOutputImg;
- net.forward(netOutputImg, net.getUnconnectedOutLayersNames());
- std::vector<int> classIds;//结果id数组
- std::vector<float> confidences;//结果每个id对应置信度数组
- std::vector<cv::Rect> boxes;//每个id矩形框
- float ratio_h = (float)netInputImg.rows / netHeight;
- float ratio_w = (float)netInputImg.cols / netWidth;
- int net_width = className.size() + 5; //输出的网络宽度是类别数+5
- float* pdata = (float*)netOutputImg[0].data;
- for (int stride = 0; stride < strideSize; stride++) { //stride
- int grid_x = (int)(netWidth / netStride[stride]);
- int grid_y = (int)(netHeight / netStride[stride]);
- for (int anchor = 0; anchor < 3; anchor++) { //anchors
- const float anchor_w = netAnchors[stride][anchor * 2];
- const float anchor_h = netAnchors[stride][anchor * 2 + 1];
- for (int i = 0; i < grid_y; i++) {
- for (int j = 0; j < grid_x; j++) {
- float box_score = pdata[4]; ;//获取每一行的box框中含有某个物体的概率
- if (box_score >= boxThreshold) {
- cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
- cv::Point classIdPoint;
- double max_class_socre;
- minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
- max_class_socre = (float)max_class_socre;
- if (max_class_socre >= classThreshold)
- {
- //rect [x,y,w,h]
- float x = pdata[0]; //x
- float y = pdata[1]; //y
- float w = pdata[2]; //w
- float h = pdata[3]; //h
- int left = (x - 0.5 * w) * ratio_w;
- int top = (y - 0.5 * h) * ratio_h;
- left = left < 0 ? 0 : left;
- top = top < 0 ? 0 : top;
- int widthBox = int(w * ratio_w);
- int heightBox = int(h * ratio_h);
- widthBox = widthBox > col ? col : widthBox;
- heightBox = heightBox > row ? row : heightBox;
- if (left < 0 || left>col || top < 0 || top>row || widthBox > col || heightBox > row
- || left + widthBox > col || top + heightBox > row
- )
- {
- continue;
- }
- classIds.push_back(classIdPoint.x);
- confidences.push_back(max_class_socre * box_score);
- boxes.push_back(cv::Rect(left, top, widthBox, heightBox));
- }
- }
- pdata += net_width;//下一行
- }
- }
- }
- }
- //执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
- vector<int> nms_result;
- cv::dnn::NMSBoxes(boxes, confidences, nmsScoreThreshold, nmsThreshold, nms_result);
- float confidenceMax = 0;
- int confidenceMaxId = 0;
- output.clear();
- resultValues.clear();
- if (nms_result.size() > 0)
- {
- vector<string> units;
- vector<pair<string, Point>> numCoordinates;
- for (int i = 0; i < nms_result.size(); i++) {
- int idx = nms_result[i];
- Output result(classIds[idx], confidences[idx], boxes[idx]);
- auto typeName = className[classIds[idx]];
- auto item = std::find_if(classTypeName.begin(), classTypeName.end(), [typeName](string strValue)
- {
- return typeName == strValue;
- });
- output.push_back(result);
- if (item!= classTypeName.end())
- {
- units.push_back(typeName);
- }
- else
- {
- numCoordinates.push_back(pair<string, Point>(className[classIds[idx]], Point(boxes[idx].x + (boxes[idx].width / 2), boxes[idx].y + boxes[idx].height)));
- }
- YunDaISASImageRecognitionService::ConsoleLog(QString::fromStdString(className[classIds[idx]]));
- }
- vector<pair<vector<Point>,vector<string>>> sameYNums;
- if (numCoordinates.size()>0)
- {
- for (size_t i = 0; i < numCoordinates.size(); i++)
- {
- Point yCondinate = numCoordinates[i].second;
- string sValue = numCoordinates[i].first;
- auto item = std::find_if(sameYNums.begin(), sameYNums.end(), [yCondinate](pair<vector<Point>, vector<string>> p)
- {
- if (p.second.size()>0)
- {
- if (cv::abs(p.first[0].y - yCondinate.y)<50)
- {
- return true;
- }
- }
- return false ;
- });
- if (item != sameYNums.end())
- {
-
- item->second.push_back(sValue);
- item->first.push_back(yCondinate);
- }
- else {
- auto resultPair = pair<vector<Point>, vector<string >>(vector<Point>{ yCondinate }, vector<string>{sValue});
- sameYNums.push_back(resultPair);
- /*if (sameYNums.size()>0)
- {
- if(sameYNums[sameYNums.size() - 1].first[0].y> yCondinate.y) {
- sameYNums.emplace(sameYNums.end(), resultPair);
- }
- }
- else
- {
- sameYNums.push_back(resultPair);
- }*/
- }
- }
- }
- if (sameYNums.size()>0)
- {
- Point exchange ;
- string excStr;
- for (size_t k = 0; k < sameYNums.size(); k++)
- {
- for (int i = 1; i < sameYNums[k].first.size()-1; i++) //主要算法
- {
- for (int j = 1; j <= sameYNums[k].first.size() - i; j++)
- {
- if (sameYNums[k].first[j - 1].x > sameYNums[k].first[j].x)
- {
- exchange = sameYNums[k].first[j - 1];
- excStr = sameYNums[k].second[j - 1];
- sameYNums[k].first[j - 1] = sameYNums[k].first[j];
- sameYNums[k].second[j - 1] = sameYNums[k].second[j];
- sameYNums[k].first[j] = exchange;
- sameYNums[k].second[j] = excStr;
- }
- }
- }
- }
- for (size_t i = 0; i < sameYNums.size(); i++)
- {
- //int pointPos = -1;
- string strValue = "";
- for (size_t j = 0; j < sameYNums[i].second.size(); j++)
- {
- if (sameYNums[i].second[j] == "point")
- {
- strValue += ".";
- }
- else
- {
- //stoi(sameYNums[i].second[j])
- strValue += sameYNums[i].second[j];
- }
- }
- if (sameYNums.size() == units.size())
- {
- resultValues.push_back(DectectResult(0.99, atof(strValue.c_str()), units[i]));
- }
- else if (units.size()>0)
- {
- resultValues.push_back(DectectResult(0.99, atof(strValue.c_str()), units[0]));
- }
- else {
- resultValues.push_back(DectectResult(0.99, atof(strValue.c_str()), ""));
- }
- }
- }
- }
- else {
- resultValue = DectectResult(confidenceMax, 0.00, "");
- }
- return false;
- }
|