123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- #define _CRT_SECURE_NO_WARNINGS
- #include <iostream>
- #include <fstream>
- #include <string>
- #include <math.h>
- #include <cmath>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include "opencv2/imgproc/types_c.h"
- #include <onnxruntime_cxx_api.h>
- #include "DoublePointerCountALGO.h"
- #include <vector>
- #include <algorithm>
- using namespace cv;
- using namespace std;
- using namespace Ort;
- void DoublePointerCountALGO::Init(bool isCuda)
- {
- string model_path = "models/double_pointer_count.onnx";
- std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
- sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
- ort_session = new Session(env, widestr.c_str(), sessionOptions);
- size_t numInputNodes = ort_session->GetInputCount();
- size_t numOutputNodes = ort_session->GetOutputCount();
- AllocatorWithDefaultOptions allocator;
- for (int i = 0; i < numInputNodes; i++)
- {
- input_names.push_back(ort_session->GetInputName(i, allocator));
- Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
- auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
- auto input_dims = input_tensor_info.GetShape();
- input_node_dims.push_back(input_dims);
- }
- for (int i = 0; i < numOutputNodes; i++)
- {
- output_names.push_back(ort_session->GetOutputName(i, allocator));
- Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
- auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
- auto output_dims = output_tensor_info.GetShape();
- output_node_dims.push_back(output_dims);
- }
- this->inpHeight = input_node_dims[0][2];
- this->inpWidth = input_node_dims[0][3];
- this->outHeight = output_node_dims[0][2];
- this->outWidth = output_node_dims[0][3];
- }
- int DoublePointerCountALGO::detect(Mat& srcimg)
- {
- vector<float> input_image_ = { 1, 3, 512, 512 };
- Mat dstimg;
- Size resize_size(input_image_[2], input_image_[3]);
- resize(srcimg, dstimg, resize_size, 0, 0, cv::INTER_LINEAR);
- int channels = dstimg.channels();
- input_image_.resize((this->inpWidth * this->inpHeight * dstimg.channels()));
- for (int c = 0; c < channels; c++)
- {
- for (int i = 0; i < this->inpHeight; i++)
- {
- for (int j = 0; j < this->inpWidth; j++)
- {
- float pix = dstimg.ptr<uchar>(i)[j * 3 + 2 - c];
- input_image_[(c * this->inpHeight * this->inpWidth + i * this->inpWidth + j)] = (pix / 255.0 - mean[c]) / stds[c];
- }
- }
- }
- array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
- auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
- Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
- // 开始推理
- vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size());
- float* pred = ort_outputs[0].GetTensorMutableData<float>();
- Mat result(outHeight, outWidth, CV_32FC1, pred);
- result = 2 - result;
- result *= 255;
- result.convertTo(result, CV_8UC1);
- Mat binary;
- threshold(result, binary, 150, 255, THRESH_BINARY);//二值化阈值处理
- //形态学变换
- Mat Sobel_Y_thres;
- Mat element = cv::getStructuringElement(MORPH_RECT, Size(1, 1));
- morphologyEx(binary, Sobel_Y_thres, cv::MORPH_OPEN, element, Point(-1, -1), 2);
- Mat result_line_image = creat_line_image(Sobel_Y_thres, 256, 130);
- /*namedWindow("矩形", WINDOW_NORMAL);
- imshow("矩形", result_line_image);
- waitKey(0);*/
- return get_meter_reader(result_line_image);
- //return result;
- }
- Mat DoublePointerCountALGO::creat_line_image(const Mat& circle, int Radius, int RingStride)
- {
- Mat rectangle;
- float theta;
- int rho;
- rectangle = Mat::zeros(Size(Radius * pi * 2, RingStride), CV_8UC1);
- int nl = rectangle.rows; // number of lines
- int nc = rectangle.cols * rectangle.channels(); // total number of elements per line
- for (int j = 0; j < nl; j++) {
- // get the address of row j
- uchar* data = rectangle.ptr<uchar>(j);
- for (int i = 0; i < nc; i++)
- {
- theta = pi * 2.0 / LINE_WIDTH * float(i + 1);
- rho = (Radius - j - 1);
- int position_y = (float)circle_center[0] + rho * (float)std::cos(theta) + 0.5;
- int position_x = (float)circle_center[1] - rho * (float)std::sin(theta) + 0.5;
- data[i] = circle.at<uchar>(position_y, position_x);
- }
- }
- return rectangle;
- }
- //像素值提取及累加
- int DoublePointerCountALGO::get_meter_reader(const Mat& image)
- {
- Mat histogram = Mat::zeros(Size(256, 1), CV_8UC1);
- int rows = LINE_HEIGH; //输入图像的行数
- int cols = LINE_WIDTH; //输入图像的列数
- int sum_horsum = 0; //水平方向列相加和
- int long_pointer = 0;
- int short_pointer = 0;
- int METER_RANGE = 9;
- //按矩形计算像素值
- vector<int>num1;
- vector<int>num_cols;
- vector<int>num3;
- vector<int>num_pixel;
- for (int c = 0; c < cols; c++)
- {
- int versum = 0;
- for (int r = 0; r < rows; r++)
- {
- int index = int(image.at<uchar>(r, c));
- versum += index;
- }
- if (versum != 0)
- {
- sum_horsum += versum;
- num1.push_back(c); //列索引
- num3.push_back(sum_horsum); //像素累加
- }
- if (versum == 0)
- {
- //列索引
- int maxValue1 = 0;
- for (auto v : num1)
- {
- if (maxValue1 < v) maxValue1 = v;
- }
- if (maxValue1 != 0)
- {
- num_cols.push_back(maxValue1);
- }
- vector<int>().swap(num1);
- //像素
- int maxValue2 = 0;
- for (auto v : num3)
- {
- if (maxValue2 < v) maxValue2 = v;
- }
- if (maxValue2 != 0)
- {
- num_pixel.push_back(maxValue2);
- }
- sum_horsum = 0;
- vector<int>().swap(num3);
- }
- }
- //标记长短指针
- auto firstValue1 = num_pixel.front();
- auto lastValue1 = num_pixel.back();
- //长短指针取值
- auto firstValue2 = num_cols.front() - 30;
- auto lastValue2 = num_cols.back() - 30;
- //赋值于长短指针
- if (firstValue1 < lastValue1)
- {
- short_pointer = firstValue2;
- long_pointer = lastValue2;
- }else
- {
- short_pointer = lastValue2;
- long_pointer = firstValue2;
- }
- //计算表盘读数
- float rectangle_value = 1650;
- float short_result_ratio = (1.0 * short_pointer / rectangle_value);
- float long_result_ratio = (1.0 * long_pointer / rectangle_value);
- float short_result_value = (1.0 * short_result_ratio * METER_RANGE) - 4;
- if (short_result_value < 0)
- {
- short_result_value += 9;
- }
- float long_result_value = (1.0 * long_result_ratio * METER_RANGE) - 4;
- if (long_result_value < 0)
- {
- long_result_value += 9;
- }
- //四舍五入取整
- if (short_result_value > 0)
- {
- short_result_value = short_result_value - int(short_result_value) >= 0.5 ? int(short_result_value) + 1 : int(short_result_value);
- }else
- {
- short_result_value = -short_result_value - int(-short_result_value) >= 0.5 ? -(int(-short_result_value) + 1) : -int(-short_result_value);
- }
- if (long_result_value > 0)
- {
- long_result_value = long_result_value - int(long_result_value) >= 0.5 ? int(long_result_value) + 1 : int(long_result_value);
- }else
- {
- long_result_value = -long_result_value - int(-long_result_value) >= 0.5 ? -(int(-long_result_value) + 1) : -int(-long_result_value);
- }
- //cout << "short_result_ratio:" << short_result_ratio << " long_result_ratio:" << long_result_ratio << endl;
- cout << "short_result_value:" << short_result_value << " long_result_value:" << long_result_value << endl;
- int result = (short_result_value * 10) + long_result_value;
- cout << "读数:" << result << endl;
- return result;
- }
|